

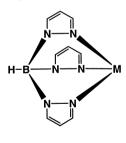
Journal of Photochemistry and Photobiology A: Chemistry 119 (1998) 187-190

Photoreactivity of (HBpyrazolyl₃) TiCl₃ and (C₅H₅)TiCl₃ initiated by ligand-to-metal charge transfer excitation

Horst Kunkely, Arnd Vogler*

Institut für Anorganische Chemie, Universität Regensburg, D-93040, Regensburg, Germany

Received 24 August 1998; accepted 24 September 1998


Abstract

The isoelectronic complexes LTi^{iv} Cl₃ with $L^- = C_5H_5^-$ and HBPz₃⁻ (hydrotrispyrazolylborate) show long-wavelength LMCT absorptions $\lambda_{max} = 382$ and 314 nm, respectively. LMCT excitation is assumed to generate L radicals and TiCl₃ in the primary photochemical step. In CHCl₃ solution TiCl₃ is reoxidized by the solvent to TiCl₄ which is formed with $\phi = 0.003$ at $\lambda_{irr} = 405$ nm ($L^- = C_5H_5^-$) and $\phi = 0.002$ at $\lambda_{irr} = 366$ nm ($L^- = HBPz_3^-$). © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Charge transfer; Titanium complexes; Metallocenes; Hydrotrispyrazolate complexes

1. Introduction

Hydrotris(1-pyrazolyl)borate $HBPz_3^-$ and its derivatives are versatile tridentate anionic ligands which coordinate to many main group and transition metals in high as well as low oxidation states [1–5].

Such complexes have attracted much attention owing to their importance for diverse applications including catalysis and bioinorganic chemistry. While HBPz₃⁻ complexes have been characterized by many different methods very little is known on their electronic spectra and photochemistry. A few spectral assignments [6–8] and photochemical observations [9,10] have been reported. However, HBPz₃⁻ seems to act as a spectator ligand in these cases. Electronic transitions and photoreactions with direct participations of coordinated HBPz₃⁻ are apparently unknown [11]. We explored this possibility and selected (HBPz₃)Ti^{IV}Cl₃ as a suitable transition metal complex for the present study. This choice was based on the following considerations.

With the exception of intraligand (IL) transitions [11] only charge transfer excitations are associated with a direct participation of a particular ligand. HBPz₃⁻ may thus serve as acceptor for metal-to-ligand charge transfer (MLCT) or donor for ligand-to-metal charge transfer (LMCT). However, there are indications that MLCT transitions occur only at very high energies owing to the instability of the π^* orbitals of the pyrazolyl substituents. The spectrum of Re(I) carbonyl complexes are diagnostic for the identification of low-energy MLCT transitions [12–14]. In the case of (HBPz₃)Re^I(CO)₃, MLCT states are apparently located well above ligand field (LF) excited states as indicated by the facile photosubstitution of a carbonyl ligand [10] in analogy to the behavior of CpRe(CO)₃ [13,15] (Cp⁻ = C₅H₅⁻).

As an alternative, $HBPz_3^-$ may function as a donor ligand for LMCT transitions. This expectation is based on the general properties of BR_4^- anions. For example, BH_4^- is a strong reductant and BPh_4^- has been shown to act as a donor for outer sphere CT transitions [16,17]. Moreover, a certain similarity between $HBPz_3^-$ and Cp^- has been frequently emphasized [1–5]. Both anionic ligands are tridentate and able to stabilize transition metals in low and high oxidation states. While coordinated Cp^- is not involved in low-energy MLCT transitions cyclopentadienyl complexes with oxidizing metals are characterized by long-wavelength LMCT absorptions [13,18,19]. In particular, d⁰ centers such as Ti(IV) are appropriate metals because any interference

^{*}Corresponding author. Tel.:+49-941-943-4485; fax:+49-941-943-44-88.

^{1010-6030/98/\$ –} see front matter \odot 1998 Elsevier Science S.A. All rights reserved. PII: S1010-6030(98)00406-7

with low-energy LF states is then avoided. For the purpose of comparison in addition to (HBPz₃) the complex CpTiCl₃ is included in the present study. Previous work on related titanocene complexes [13] such as Cp₂TiCl₂ [20,21], Cp₂TiS₅ [22] and Cp₂Ti[NCRu(CN)₅]₂^{6–} [23] are expected to facilitate the investigation of the spectroscopy and photochemistry of (HBPz₃)TiCl₃ and CpTiCl₃. Finally, the photochemistry of CpTiCl₃ and the isoelectronic complex CpRe^{VII}O₃ [24] may reveal some common features which can be rationalized on the same basis.

2. Experimental

2.1. Materials/instrumentation

All solvents and chemicals were used as purchased without further purification. $(C_5H_5)TiCl_3$ and $(HBPz_3)TiCl_3$ were obtained from Strem. Absorption spectra were measured in carefully dried and argon saturated spectrograde CHCl₃ with a Hewlett Packard 8452A diode array spectrometer.

2.2. Photolyses

The light source was an Osram HBO 100W/2 or a Hanovia Xe/Hg 977 B-1 (1 kW) lamp. Monochromatic light was obtained using a Schoeffel GM 250/1 high-intensity mono-chromator (band width 20 nm). The photolyses were carried out in solutions of CHCl₃ in 1 cm spectrophotometer cells at room temperature. Progress of the photolyses was monitored by UV-visible spectrophotometry. For quantum yield determinations the complex concentrations were such as to have essentially complete light absorption. The total amount of photolysis was limited to less than 5% to avoid light absorption by the photoproduct. Absorbed light intensities were determined by a Polytec pyroelectric radiometer which was calibrated by actinometry and equipped with a RkP-345 detector.

3. Results

The electronic spectrum of CpTiCl₃ in CHCl₃ (Fig. 1) shows absorptions at $\lambda_{max} = 382$ ($\varepsilon = 2100$ dm³ M⁻¹ cm⁻¹) and 326 (4100) nm. (HBPz₃)TiCl₃ in CHCl₃ displays a band at $\lambda_{max} = 314$ nm (14800) (Fig. 2). For comparison the spectrum of TiCl₄ was measured, too. The longest-wavelength absorption which occurs as maximum at 287 nm [25] in cyclohexane, appears only as inflection in CHCl₃ because this solvent cuts of at $\lambda < 240$ nm.

Solutions of CpTiCl₃ in CHCl₃ are light sensitive. The photolysis is accompanied by spectral changes (Fig. 1) which indicate the formation of TiCl₄. The final spectrum is very close to that of TiCl₄ in CHCl₃. Other photolysis products, in particular organic compounds, absorb appar-

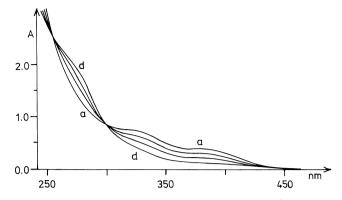


Fig. 1. Spectral changes during the photolysis of 1.83×10^{-4} M CpTiCl₃ in CHCl₃ under argon at R.T after 0 (a), 10, 30 and 60 (d) min irradiation time with $\lambda_{irr} > 320$ nm (Osram HBO 100W/2 lamp), 1 cm cell.

ently only at shorter wavelength. The appearance of two isosbestic points at $\lambda = 300$ and 253 nm (Fig. 1) is an indication of a clean photoreaction. The progress of the photolysis is followed by measuring the decrease of the optical density at 326 nm taking into account the residual absorption of TiCl₄ at this wavelength ($\varepsilon = 1600$). The quantum yield for the formation of TiCl₄ was $\phi = 0.003$ at $\lambda_{irr} = 405$ nm.

Solutions of (HBPz₃)TiCl₃ in CHCl₃ are also photosensitive. The photolysis leads to results which are very similar to those obtained for CpTiCl₃. However, the spectral variations (Fig. 2) include a rather diffuse isosbestic 'point' which indicates the occurance of secondary and/or side reactions. Nevertheless, TiCl₄ is also formed as final photoproduct. The formation of TiCl₄ ($\phi = 0.002$ at $\lambda_{irr} =$ 366 nm) was determined by the decline of the absorbance at 314 nm.

4. Discussion

 $TiCl_4$ is a tetrahedral d⁰ complex which shows only LMCT absorptions [25]. The longest-wavelength LMCT

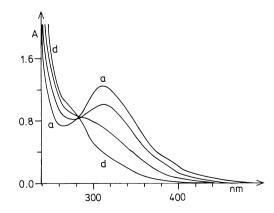


Fig. 2. Spectral changes during the photolysis of 8.78×10^{-5} M (HBPz₃)TiCl₃ in CHCl₃ under argon at R.T after 0 (a), 5, 10 and 30 (d) min irradiation time with $\lambda_{\rm irr} = 366$ nm (Xe/Hg 977 B-1 lamp), 1 cm cell.

band at $\lambda_{\text{max}} = 287$ nm is assigned to the HOMO $(t_1) \rightarrow$ LUMO (e) transition from chloride π antibonding with respect to the Ti–Cl interaction.

CpTiCl₃ and (HBPz₃)TiCl₃ are obtained from TiCl₄ by replacing a chloride by a Cp⁻ and HBPz₃⁻ ligand, respectively. In a simplified picture both complexes can be viewed as pseudotetrahedral molecules although a description as pseudo-octahedral complexes is also appropriate since Cp⁻ (half sandwich) and HBPz₃⁻ occupy three coordination sites at Ti.

Since Cp⁻ is a stronger donor than Cl⁻ the lowest-energy transitions of Cp₂TiCl₂ [20,21,26] and certainly also of CpTiCl₃ are of the Cp⁻ \rightarrow Ti^{IV} LMCT type. They are shifted to lower energies in comparison to TiCl₄ [25]. For CpTiCl₃ this relatively intense Cp⁻ \rightarrow Ti^{IV} LMCT band appear at $\lambda_{max} = 382$ nm (Fig. 1) in close proximity to the corresponding LMCT band of Cp₂TiCl₂ (in THF, $\lambda_{max} = 385$ nm, $\varepsilon = 2730$) [21].

The longest-wavelength $\pi\pi^*$ absorption of free and coordinated HBPz₃⁻ appear at $\lambda_{max} = 215$ nm [11]. It follows that the 314 nm band of (HBPz₃)TiCl₃ can be only assigned to a HBPz₃⁻ \rightarrow Ti^{IV} LMCT transition. The occurance of a such LMCT transition at rather low energies is expected in view of the well-known donor properties of anions such as BPh₄⁻ [16,17]. However, the comparison of the LMCT transitions of CpTiCl₃ and (HBPz₃) TiCl₃ shows that HBPz₃⁻ is a somewhat weaker donor than Cp⁻.

A variety of titanocene derivatives undergo a photochemical reduction of Ti(IV) and ligand oxidation in the primary photochemical step upon LMCT excitation [13,20–23]. If the lowest-energy LMCT transition is of the Cp⁻ \rightarrow Ti^{IV} type, Cp radicals are apparently generated initially [13,20,21]. While in the absence of suitable scavengers an efficient recombination can take place, chlorinated alkanes such as CHCl₃ are able to intercept and oxidize Ti(III) [13,20–23]. In analogy to these titanocene derivatives the photolysis of CpTiCl₃ in CHCl₃ should proceed according to a very simple scheme:

 $CpTiCl_3 - - hv \rightarrow Cp' + TiCl_3$

 $TiCl_3 + CHCl_3 \rightarrow TiCl_4 + CHCl_2$

The fate of the Cp⁻ radicals is unknown. However, an investigation of CpReO₃ which is isoelectronic to CpTiCl₃ has shown that the Cp⁻ radicals which are produced in the primary photochemical step undergo various secondary processes including radical coupling reactions such as dimerization [24].

The photolysis of $(HBPz_3)TiCl_3$ in $CHCl_3$ induced by LMCT excitation takes place apparently in analogy to $CpTiCl_3$:

$$(\text{HBPz}_3)\text{TiCl}_3 - hv \rightarrow (\text{HBPz}_3) + \text{TiCl}_3$$

$$TiCl_3 + CHCl_3 \rightarrow TiCl_4 + CHCl_2$$

Although no attempt was made to reveal the fate of the (HBPz₃)[•] radical a reasonable assumption is based related

observations. The outer sphere CT oxidation of BPh_4^- [16,17] or B(benzyl)Ph₃⁻ [27] leads initially to the formation of BPh₄[•] or B(benzyl) Ph₃[•] radicals which undergo a fragmentation to BPh₃ + Ph[•] or BPh₃ + benzyl[•], respectively. Accordingly, the (HBPz₃)[•] radical may yield HBPz₂ and Pz[•] or BPz₃ and H atom in a subsequent fragmentation process, which is followed by further reactions of these reactive intermediates.

5. Conclusion

Hydrotris (1-pyrazolyl) borate (HBPz₃⁻) is a donor ligand for optical CT. In combination with oxidizing metals lowenergy LMCT transitions are expected to occur. In the case of (HBPz₃)Ti^{IV}Cl₃ this LMCT absorption appears at $\lambda_{max} = 314$ nm. LMCT excitation is assumed to lead to the generation of a HBPz₃ in the primary photochemical step. TiCl₃ is reoxidized by CHCl₃ to yield TiCl₄ as final product.

Acknowledgements

Support of this research by the DFG and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- [1] S. Trofimenko, Chem. Rev. 93 (1993) 943.
- [2] S. Trofimenko, Progr. Inorg. Chem. 34 (1986) 115.
- [3] K. Niedenzu, S. Trofimenko, Top. Curr. Chem. 131 (1986) 1.
- [4] S. Trofimenko, Chem. Rev. 72 (1972) 497.
- [5] S. Trofimenko, Acc. Chem. Res. 4 (1971) 17.
- [6] W.H. Armstrong, A. Spool, G.C. Papaefthymiou, R.B. Frankel, S.J. Lippard, J. Am. Chem. Soc. 106 (1984) 3653.
- [7] W.E. Cleland Jr., K.M. Barnhart, K. Yamanoichi, D. Collinson, F.E. Mabbs, R.B. Ortega, J.H. Enemark, Inorg. Chem. 26 (1985) 1017.
- [8] M.J. Baldwin, D.E. Root, J.E. Root, J.E. Pate, K. Fujisawa, N. Kitajima, E.I. Solomon, J. Am. Chem. Soc. 114 (1992) 10421.
- [9] R.F. Sterling, C. Kutal, Inorg. Chem. 19 (1980) 1502.
- [10] M. Angaroni., G.A. Ardizzoia., G. D'Alfonso., G. LaMonica., N. Masciocchi., M. Moret, J. Chem. Soc., Dalton Trans. (1990) 1895.
- [11] The $\pi\pi^*$ IL absorption of coordinated HBPz₃⁻ appears at $\lambda_{max} = 215$ nm [9].
- [12] D.J. Stufkens, Comments Inorg. Chem. 13 (1992) 359.
- [13] G.L. Geoffroy, M.S. Wrighton, Organometallic Photochemistry, Academic Press, New York, 1979.
- [14] A.J. Lees, Chem. Rev. 87 (1987) 711.
- [15] P.J. Giordano, M.S. Wrighton, Inorg. Chem. 16 (1977) 160.
- [16] A. Vogler, H. Kunkely, Top. Curr. Chem. 158 (1990) 1.
- [17] H. Hennig, D. Rehorek, R. Billing, Top. Curr. Chem. 158 (1990) 163.
- [18] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1974.
- [19] A. Vogler, H. Kunkely, Comments Inorg. Chem. 19 (1997) 283.

- [20] R.W. Harrigan, G.S. Hammond, H.B. Gray, J. Organomet. Chem. 81 (1974) 79.
- [21] Z.-T. Tsai, C.H. Brubaker Jr., J. Organomet. Chem. 166 (1979) 199.
- [22] H. Kunkely, A. Vogler, Z. Naturforsch. 53b (1998) 224.
- [23] H. Kunkely, A. Vogler, Inorg. Chim. Acta 254 (1997) 195.
- [24] W.A. Herrmann, F.E. Kühn, D.A. Fiedler, M.R. Mattner, M.R. Geisberger, H. Kunkely, A. Vogler, S. Steenken, Organometallics 14 (1995) 5377.
- [25] C. Dijkgraaf, Spectrochim. Acta 21 (1965) 769.
- [26] M.R.M. Bruce, A. Kenter, D.R. Tyler, J. Am. Chem. Soc. 106 (1984) 639.
- [27] B.H. McCosar, K.S. Schanze, Inorg. Chem. 35 (1996) 6800.